Research

Publications

  • Dizon-Paradis, O. P, Wormald S. E., Capecci, D. E., Bhandarkar A., and Woodard, D. L. (2024). Resource usage evaluation of discrete model-free deep reinforcement learning algorithms. Reinforcement Learning Journal, ISBN 979-8-218-41163-3, 2024. Accepted.
  • Wormald et al., “Integrated Computational Materials Engineering to Predict Dimensions for Steady-State and Transient Melt-Pool Formation in the Selective Laser Melting of Inconel 625.”

Informally Published

  • Preprint: Wormald, S., Koblah, D. Maldaner, M. K., Forte, D., & Woodard, D. L. (2024). eXpLogic: Explaining Logic Types and Patterns in DiffLogic Networks. International Conference of Information Technology. https://doi.org/10.48550/arXiv.2503.09910
  • Preprint: Wormald, S., Maldaner, M. K., O'Connor, K. D., Dizon-Paradis, O. P., & Woodard, D. L. (2024). Abstracting General Syntax for XAI after Decomposing Explanation Sub Components. http://dx.doi.org/10.21203/rs.3.rs-4824427/v1
  • Preprint: Dizon-Paradis, O. P., Wormald, S. E., Zhu, M., Wilson, R., & Woodard, D. L. (2024). LfRLD: Learning from Reinforcement Learning Demonstrations. Authorea Preprints. https://doi.org/10.36227/techrxiv.172927301.18452996/v1

Conference Presentations

  • “Resource Usage Evaluation of Discrete Model-Free Deep Reinforcement Learning Algorithms,” Reinforcement Learning Conference, Amherst, MA, United States, August 2024
  • “Transition to Application for Feature-specific Additive Manufacturing Parameter Prediction to Reduce Defects in the As-built Material,” ASTM, ICAM International Conference on AM, November 2021.  

Mentored Posters & Presentations

  • M. K. Maldaner, R. Valle, L. Nayab, S. Wormald, D. Forte, and D. Woodard, Accelerating Real-Time Inference with FPGA-Implemented Logic Gate Neural Networks, Florida Undergraduate Research Conference (FURC), 2025.
  • S. Wormald, D. Koblah, M. K. Maldaner, D. Forte, and D. Woodard, eXpLogic: Explaining Logic Types and Patterns in DiffLogic Networks, HiPerGator Symposium, 2025.
  • W. Bowman, S. Patel, R. Pu, S. Wormald, D. Woodard, Towards Transparent AI: Envisioning Comprehensive Frameworks for Explainability, University of Florida AI Days, 2024.
  • O. P. Dizon-Paradis, S. E. Wormald, D. E. Capecci, A. Bhandarkar, and D. L. Woodard, Resource Usage Evaluation of Discrete Model-Free Deep Reinforcement Learning Algorithms, Reinforcement Learning Conference (RLC), 2024.
  • M. K. Maldaner, S. Wormald, O. Dizon-Paradis, and D. L. Woodard, Ethical Horizons in Neuro Symbolic AI, UF Center for Undergraduate Research (CUR), Spring Undergraduate Research Symposium, 2024. 
  • K. Ambrose, O. Dizon-Paradis, S. E. Wormald, and D. L. Woodard, Causal AI: The Frontier of Cause and Effect in AI, UF Center for Undergraduate Research (CUR), Spring Undergraduate Research Symposium, 2024. 
  • Matheus Kunzler Maldaner, Stephen Wormald, Olivia Dizon-Paradis, Damon L. Woodard, Neuro Symbolic AI: Merging Neural Networks and Symbolic Reasoning for AI Transparency, Florida Undergraduate Research Conference (FURC), 2024.
  • (Submitted) K. O'Connor, S. Wormald, and D. Woodard, Causal Clusters: Representing Explainable Feature Learned by Deep Neural Networks as Causal Graphs, UF Center for Undergraduate Research (CUR), Spring Undergraduate Research Symposium, 2025.
  • (Submitted) E. Bloomquist, A. Cole, S. Wormald, and D. Woodard, From Black-Box to Glass-Box Models: Toward Explainability in Reinforcement Learning, UF Center for Undergraduate Research (CUR), Spring Undergraduate Research Symposium, 2025.