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Abstract—Autonomous systems frequently use probabilistic
models, reinforcement learning, and machine learning techniques
built upon Markov Chains (MC) and Markov Decision Processes
(MDP) to model problem spaces, perform forecasting, and learn
policies for task completion. However, explicit structures of
Markov models can be challenging to define, and models hand-
crafted by experts become challenging to maintain. Related
approaches use high-dimensional and continuous state spaces
and neural networks to define MDPs for reinforcement learning
applications. However, the resulting models can require increased
data size and training time. Furthermore, high-dimensional
models are often inexplicable due to complex mathematical
abstraction and are challenging to visualize. This paper proposes
a method to construct MCs by partitioning a state-space using
Gaussian mixture models to generate symbolic representations
of time-series datasets. The algorithm is demonstrated on an
Electrocardiogram (ECG) dataset, and is extended to the problem
of forecasting the next symbolic state using a MC representing
learned states and state transition times.1

I. BACKGROUND

IN modern Machine Learning (ML), Neural Networks (NN),
Deep NNs (DNN), Generative Adversarial NNs (GAN),

Convolutional NNs (CNN), and transformers have proven
useful across various application spaces. While capable, these
models can be challenging to explain and approve for safety
[1]. The ML formulation of Reinforcement Learning (RL) is
built upon the more basic idea of maximizing reward in a
Markov Decision Processes (MDP) via use of the bellman
equations. Though RL often uses neural networks and loses
explainability, simpler Markov Models are often more explain-
able due to the reduced dimensionality of the model when the
state definition and transitions are well understood.

However, systems built upon Markov models are con-
strained by the model structure and can lack adaptivity when
encountering anomalous states or out-of-distribution observa-
tions. For example, expert systems depending on graphical
models like MDPs encountered challenges with brittleness
because describing the full set of states and transition rules
depend on domain-knowledge which can be inconsistent,
incomplete, and challenging to maintain [2]. Furthermore, it
can be non-trivial to know how observations map to expert-
described states, or whether the model contains a state for new
observations. To address this problem, methods are emerg-
ing to detect and account for out-of-distribution observations
[3]. This paper demonstrates an algorithm for constructing
reduced-order representations of time-series data that may be
used to forecast the next abstract state in the learned MC.

1This paper was written as a final project report and is not peer reviewed.

Various methods exist to derive MCs from time series
data (Fig. 1 shows notional data). These methods are based
on wavelet-based partitioning [6], information theoretic ap-
proaches [5], and phase-space partitioning [8] to compress
time-series data into a symbolic representation with reduced-
order. Generally, after partitioning a state space, a symbol is
assigned to each state region. A trajectory through the state
space can be converted into a symbolic representation by
adding one of these symbols to a symbol sequence whenever
the trajectory transitions to a new partition. This paper mimics
this methodology using Gaussian Mixture Models (GMM) to
find K clusters of trajectory types, effectively partitioning a
larger state space into K regions, before generating a repre-
sentative MC that was used to forecast the next state. Section
II describes the problem statement before the algorithm and
project approach are discussed in Section III. Section III
describes results from MC construction and application to
forecasting the next state.

II. PROBLEM STATEMENT

The problem statement is to develop an algorithm for
constructing MCs that act as reduced-order and symbolic
representations of time-series data, and then to use the gen-
erated MC to forecast the next symbolic state. This problem
was self-selected as a project topic for a Safe Autonomous
Systems class taught at the University of Florida. Note the
proposed problem statement changed from implementing sev-
eral published algorithms to developing an algorithm due to
time constraints (20hr/week). After developing the algorithm
(MCluster), MCluster was used to generate MCs with prob-
abilistic state transitions. The generated MC was then used to
forecast the next N states to determine how long the next state
could be predicted accurately without observing the true state.
MCluster was tested on single-dimensional time series data
from an electrocardiogram (ECG) dataset, though in principle
the approach extends to multidimensional or multi-channel
time series data.

III. PROJECT APPROACH

The problem approach comprised of four key tasks. These
tasks consist of understanding existing algorithms, creating
and verifying the MCluster algorithm, using MCluster to
generate MC chains for the ECG dataset, and using generated
MCs to perform forecasting for the next sybmol states.

Task 1 – Identify and Understand Algorithms that
Generate MCs: Several key algorithms acted as inspiration
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Fig. 1. Depiction showing the reduced order representation of time-series data
using a MC. (a) Representative time series data. (B) Time series data with
two predominant features, increasing and decreasing data trends, represented
by a two-symbol alphabet of the set a,b. (C) Reduced order MC representing
the state transitions and the transition probabilities.

for the MCluster algorithm, including: (1) Symbolic
False Nearest Neighbors (SFNN), which is a phase-space
partitioning algorithm for continuous data [4]; (2) Wavelet-
based partitioning, which is built on the wavelet transform
[6]; (3) The ϵ-machine, which was designed to approximate
the motion of non-linear dynamical systems [11]; (4) the
D-Markov machine which focuses on the characterization
of anomaly detection in chaotic systems [5]. The D-Markov
machine was reviewed in more detail and acted as the
main inspiration when developing MCluster. The D-Markov
machine algorithm seeks to partition a state space into
cells that produce causal transitions between cells, where
each cell is assigned a symbol in an symbol alphabet A.
Mathematically, given a state sequence S, composed of
historical states (

←−
S ) and future states (

−→
S ), an agglomerate or

abstract state R is considered prescient (or effectively causal)
if:

H[
−→
S L|R] = H[

−→
S L|
←−
S ]∀L ∈ N (1)

Where L determines the length of state sequences being
considered. Intuitively, this formulation means that an R is
a good effective state (representing a state space partition)
when the prediction of of the future state sequence (

−→
S L)

made using R is the same as predicting (
−→
S L) when knowing

the full state history (
←−
S ).

Practically, this algorithm is implemented as a sub-tree
merging problem for many generated state histories

←−
S . The

system dynamics are observed and used to generate a tree
data structure before performing the sub-tree merging which
essentially groups like states so that the agglomerate states
are maximally causal.

Task 2 – Develop and test the MCluster algorithm
for MCs construction: The MCluster algorithm was
designed to use Gaussian mixture models in order to identify
N number of states that best represent different kinds of
patterns in time series data. The feature space was generated
by taking a single times series data stream and generating
sequences of length L, which generates a number or set of
observations in an L dimensional space. Clusters in this space
represent signal patterns that stand out in the time series data
set. Similar to the papers read and described in Task 1, each
cluster corresponds to a state space partition, and is assigned a
unique symbol When in order to generate a MC representing
the time series data set. Each point in the time series is
assigned a symbol based upon the cluster it is assigned to.
The resulting sequence may be compressed to only include
the current state and number of repetitions of that state before
transitioning to a different state. This method was tested for
a simple time series data set representing a triangle wave
with noise. Results from this testing are described in Section
IV. Note the number of clusters and the segment length L
are both hyperparameters that need to be optimized. Figure 2
shows a graphical illustration of the approach.

Task 3 – Use the MCluster algorithm to build MCs
representing the ECG dataset: The algorithm was used to
construct a MC representing the ECG data set from reference.
For this work, the number of clusters was assumed to be K=3,
though this is a potential area of improvement. After building
a symbol sequence that represents the transitions between
different states, two different types of MCs were constructed.
The first MC represents only state transitions by counting the
number of times one state transitions into the next states. This
kind of MC represents a reduced-order transition between
states, but does not lend itself to forecasting in time. A
second MC type was created with states representing the time
spent inside of each class (see Fig. 3). In this transient MC
formulation, each class corresponds to T states, where T is
the maximum number of time increments a class ID remained
unchanged. The probability of transitioning from one state to
the next state was calculated by dividing the number of state
transitions between two states (between S0 and S1, or S01)
by the total number of state transitions out of a the prior state
(S0,total). Section IV describes results from this approach.

Task 4 – Perform forecasting of the next state in a MC
to evaluate the MC predictive capability: The transient MC
generated in Task 3 was used to perform forecasting of the
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Fig. 2. Approach for generating data from time series data set by partitioning it into sections of length L, where each data section is represents a single
point in an L dimensional space where clustering may be used to identify patterns. This approach was tested for a triangle wave with noise showing that the
upwards and downward slopes are classified as two distinct states. Gaussian mixture models were used to identify two states in this test. The rightmost figure
shows points classified according to class type, where the found state is plotted with respect to time in the bottom figure on the rightmost side.

Fig. 3. Representative time dependent MC with two states (A and B),
assuming that the end state will eventually transition to an alternate state.
For this work, a length of n = 800 was selected as the longest time without
state a transition was 800 time steps. The 2-state may be generalized to any
number of states.

next ECG state in a probabilistic manner. Using the transient
MC, the transition probability to other states was generated
as a function of time elapsed inside of a state. This process
creates, transition probability curves which were generated
for each state. These transition probability curves were used
to perform forecasting.

Given a current state, (defined by the class ID and the
number of elapsed time steps) the transition probabilities to
the next states were identified from the transition probability
curves corresponding to that state. A random number was
generated and was used to determine the next state with
a frequency according to the state transition probabilities
leading out of the current state. This approach was repeated
one hundred times for M time steps into the future to predict a
single symbolic sequence. The predicted symbol at each time
step was predicted as the class with the highest probability
of occurring. Note M is defined as a variable so the total
prediction accuracy can be recorded as a function of the
distance of time predicted into the future. The results from
state forecasting are described in Section IV.

IV. RESULTS AND DISCUSSION

This section details the project results. Result correspond
to the four tasks described Section III.

Results from testing the algorithm:

In the initial software formulation for this project, the
D-Markov algorithm was not implemented exactly due to
time constraints. Specifically, the sub-tree merging algorithm
was replaced with a clustering approach which mimics the
idea of merging similar states with similar transitions.

The simplified algorithm is explained with reference to
Figure 4, where a periodic triangle wave with noise was
generated for testing and illustration purposes. The full time
series dataset is first used to generate a set of state sequences
of length L. Essentially, a sliding window of length L is
shifted across the initial time series dataset, where the state
sequence associated with each shift is added to the set state
histories (

←−
S ). If the initial time series sequence is 10000

samples long, and L = 100, then the number of state histories
in
←−
S would be 9900. The shaded regions in Figure 4.a

represent two state histories. In other words, this process
generates 9900 points in an L-dimensional space, where
clustering algorithms may be used to find groups of similar
state histories. In this work, the Gaussian Mixture Model
(GMM) clustering algorithm was used as this algorithm
considers the covariance of the data. The K-Means clustering
algorithm was tested, but gave worse results. Figure 4.b
shows results from clustering when L = 50 and the number of
Gaussian models (K) was 2, where each subplot shows the set
of state sequences associated with either Class 0 or Class 1
(plotted with high transparency to show general trends). Note
that the set of state histories in Class 0 generally represents
the set of downward sloping lines, whereas Class 1 generally
represents the set of upward sloping lines. The fit GMM
may be used to generate class IDs for state histories in the
initial dataset. Figure 4.c colors points from Figure 4.a with
the class ID. Note how the upward and downward lines are
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cleanly distinguished from each other, where the color or
class ID represents the symbol from the symbol alphabet B
ID of a given state history. When expressed as a MC, this
state space partitioning produces a 2 state MC with transition
probabilities of 1 between each state.

Results from MC generation for ECG data:

The approach used for the noisy triangle wave was repeated
for the single-dimensional electrocardiogram data (ECG)
where K=3, as seen in Figure 5. Note each state history was
normalized prior to using the GMM clustering algorithm
because the magnitude of response changes significantly
through the time series. The clusters identified are better
understood through Figure 5.b. In this subplot, the state
histories associated with Class 2 capture the heartbeat pattern,
allowing these sections of the time series to be classified as
seen in Figure 5.c. Note Class 1 and 0 from Figure 5.b capture
the stationary regions between heartbeats, as represented by
the largely random distribution of state histories in Figure
5.b.

Note there is a relationship between L, the optimal number
of GMM clusters K, the periodicity of trends in time series
data, and the quality of MC construction. Furthermore, a
single value of L is used in the MC construction, though
there is likely benefit in using a variety of L per cluster.
These variables and relationships are not studied in the scope
of this project.

Time series forecasting can be approximated in the symbol
sequence space after constructing a MC from time series data.
As mentioned previously, the transition between each Class
ID represents the transition between individual states, which
can be used to generate a representative MC. Specifically, the
number of transitions from one state to every other state can
be counted and normalized by the total number of transitions
to represent the individual state transition probabilities. Figure
6 shows a MC constructed in this manner.

However, this MC does not represent the time spent
inside of a single state. The time inside of a single state
is important when determining time series forecast. The
transient MC was also created as described in the project
approach, and the transition probabilities for each class ID to
each other class ID is depicted in Fig. 7. Note how for each
state, the probability of transitioning to the same class ID (not
changing state) is high for the initial 200-400 states. After
this time, the probability of an alternate class ID becomes
higher. Note that due to the stochastic nature of the transition
probabilities, the transition probability after approximately
350 states was forced to transition to the most likely state
that is not the current state. This problem could be avoided
if more samples were collected, or if better state transition
probabilities were estimated.

Results from time series forecasting:

Fig. 4. Process of finding symbolic representations of state space trajectories
applied to synthetic triangle wave with noise. (A) The initial time series dataset
is used to generate a set of state histories of length L. These state histories
act as points in an L-dimensional where GMM clustering is performed. (2)
Clustered state histories corresponding to Class 0 and Class 1, where each
class represents a symbolic state. (3) Points in the original time series dataset
are colored according to their class value, where purple represents Class 0,
and yellow represents Class 1.

Time series forecasting was completed using the transient
state transition probabilities in Fig. 7. Starting with some
initial state, the next state could be computed probabilistically
by generating a random number, and then generating the next
state with a frequency in proportion to the probability of
each next state. The next predicted state would then be set
as the current state. This process would be repeated M times
into the future. After M steps, the predicted state was set
to equal the real state, which simulates the act of observing
the real state in an environment. In other words, changing M
and calculating the prediction accuracy shows how far into
the future predictions can be made well before the prediction
accuracy becomes poor.

When generating symbol trajectories, it is important
that the state sequence statistics match the original sequence
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Fig. 5. Process of finding symbolic representations of state space trajectories
applied to synthetic fetal ECG data. (A) The initial time series dataset is
used to generate a set of state histories of length L. These state histories
act as points in an L-dimensional where GMM clustering is performed. (2)
Clustered state histories corresponding to Class 0, Class 1, and Class 2, where
each class represents a symbolic state. (3) Points in the original time series
dataset are colored according to their class value, showing how the heartbeat
can be segmented as Class 0.

Fig. 6. Markov chain with state transition probabilities listed on edges for the
time series GMM compression represented in Figure 5. Red dashed arrows
represent the state transitions which maximize transition probability.

distribution. Fig. 10 shows a distribution of how long a
trajectory stayed in a given class ID before transitioning
to a different class ID (for both the actual and simulated
data). The distributions are similar, except for where the
class type duration is greater than 175 for the simulated data.
This feature arises because state transition was forced after
approximately 200 time steps come on whereas in the actual
data some state transitions occurred after this duration. Fig.
8 superimposes the real estate trajectory, the distribution of

simulated state trajectories, and the average state prediction.
In this figure, predictions are made up to 10 time steps into
the future (M=10). Note how the average state prediction in
yellow typically matches the real prediction, even though the
simulated trajectories in blue do not always match.

The accuracy of prediction may be calculated as the
number true predictions divided by the total number of
predictions. The prediction accuracy was calculated as a
function of M, and is shown in Figure 10. Note that the
prediction accuracy can achieve up to 80% when M <50.
Note that these results are achieved using a standard transient
MC that is not optimized to maximize the effective accuracy.
Further work could improve these results by altering the state
clustering to improve accurate forecasting.

V. CONCLUSION

Salient conclusions include:

• States captured through the GMM approach represent
meaningful patterns of interest from time series data,
such as heartbeats in ECG data. These results indicate
that features captured by the GMM approach have the
potential to be human explainable, which is valuable for
explainable machine learning methods.

• While MCs can be constructed from time series data,
these resulting MCs cannot always be used to perform
accurate forecasting. Learned MCs can be used to gen-
erated distributions of feasible trajectories, though the
results are often constrained to the symbol space rather
than the original trajectory space. Transient MCs help
perform more accurate forecasting in the symbol space.

Salient next steps include:

• Vary window length: Clusters could be generated with a
variety of window lengths, effectively changing the filter
length used when findings states in the time series data.
A kind of hierarchical clustering could be incorporated
to identify states with different window lengths L.

• Extend to multidimensional data: The current project
focused on the use of single dimensional data. However,
the method could easily be extended to multidimensional
data by changing the clustering space. Data sets could
include video data, wristwatch wearable data, or any
dataset with multiple communication channels.

• Analyze cluster features: To aid explainability, the seg-
ments extracted from the time series data set could be
analyze to determine feature uniqueness. For example,
principal component analysis could be used to identify
how different each state is from one another period.
The clustering algorithm could be adapted in order to
maximize the difference between state features.

• Dynamic MC creation in the presence of new obser-
vations: The clustering algorithm could be extended to
optimize the number of clusters in response to new
data. This approach would seek to capture situations
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Fig. 7. State transition probabilities calculated for each state. The state transition was calculated by dividing the total number of transitions to the next state
by the total number of transitions out of the current state. The total number of states was determined by a transient MC of length 800, as represented in Fig.
3. Note each figure corresponds to a single state, as described pictorially in the legend using clipped portions of Fig. 5.

Fig. 8. Time series prediction of the state when the time between observations
was 10. In other words, the next state was predicted blindly for 10 time steps
before setting the predicted state to the true state, replicating an observation.
The red line represents the true state, the blue lines represent simulated states
representing many superimposed trajectories, and the yellow state represents
the average state prediction.

where out of distribution observations are incorporated
by connecting new states to an existing MC. Alternately,
new states could be defined in response to different error
types to aid in the prediction of the next state.
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