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Impact of Feedback Modalities on an Agent’s
State-Action Trajectories: Q-Learning using the

OpenAI-Gym Mountain Car Environment
Stephen Wormald

Abstract—In Reinforcement Learning (RL), an agent’s move-
ment through an environment is related to the expected reward
or policy at state-action pairs. The number of state-action pairs
increases when an agent has access to more feedback channels.
This paper explores how increasing the number of feedback
channels influences an agent’s ability to reach a goal. The agent’s
performance is evaluated in terms of number of episodes needed
to reach a goal, the mean reward across episodes prior to solving
the game, and the evolution of an agent’s state-space trajectories
as it learns across episodes. The agent is a 2-Dimensional vehicle
from the Mountain Car environment distributed through the
OpenAI-Gym [3]. Results indicate that there is little to no
influence on an agent’s state-space trajectory when varying
feedback modalities. There is influence of feedback modalities
on other performance metrics such as the number of episodes
required to train an agent. This finding may depend on the
limited environment complexity.

I. INTRODUCTION

THE OpenAI Gym provides a simple interface to easily
test RL algorithms [1]. There are multiple 2-Dimensional

(2D) and 3D environments with a variety of agent types. This
project focuses on the Mountain Car game from the OpenAI
Gym where the agent, a 2D vehicle, decides to move left,
right, or apply no action in order to meet its goal of reaching
an objective flag at the top of a hill. For the baseline feedback
modality (FM0), the agent has access to its location (X)
and velocity (Xdot) along the horizontal axis (Figure 1). The
number of feedback channels can be increased or decreased to
study the impact on how agents traverse the environment and
make decisions in the state space. The project objective is to
quantify how access to different feedback modalities, or sets
of feedback channels, influences the agent’s ability to achieve
its goal.

The following sections describe the results from imple-
menting the ϵ-greedy RL algorithm to solve the objective
of the Mountain Car environment. Section II overviews the
RL formulation through Q-Learning and expands upon the
problem statement. Section III describes the results from
exploring how learning parameters impact the agent’s ability
to reach a goal, and how varying the feedback modalities
influences what path the agent takes to reach the goal. Section
IV overviews several other projects and modern topics related
to the RL paradigm before summarizing conclusions in Section
V.

Fig. 1. Depiction of the Mountain Car environment from the OpenAI gym
[1], which illustrates the agent and the key state-variables that the environment
makes available to the agent.

II. DESCRIPTION

This section describes the RL problem formulation through
Q-learning (Section (II-A)) and reviews the research question
in more detail (Section (II-B)).

A. Reinforcement Learning Formulation

RL often considers how an agent makes actions in an
environment to maximize expected rewards. An environment
comprises a set of states, where agents transition between
states either probabilistically or by performing actions. Each
action may be associated with positive or negative rewards.
For example, when the agent in the Mountain Car environment
moves past the flag, it receives a reward. The action bringing
the agent to this state would be reinforced using a policy
update so that the agent is more likely to take this action
in the future. Action not directly associated with the goal can
still receive value if they are connected to other high-values
states as determined by the ϵ-greedy RL algorithm.

When an agent is placed into a new environment, it may not
know the value associated with given actions. This is called
model free reinforcement learning. The agent can move and
observe when rewards are given, and use these rewards to
update the expected value of the associated state. The process
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of updated expected the reward is starts with the Bellman
Optimality Equations [4].

q∗(S,A) = Eπ[Rt+1 + γ ∗maxA′(q∗(S
′, A′))] (1)

In Equation 1, q∗(S,A) is the action value function, or the
expectation of future reward given some action (A) and state
(S). The expectation of reward is calculated given the optimal
policy (∗). The term maxA′(q∗(S

′, A′)) is the maximum
reward of the next state (S’) and action (A’) scaled by a
discount factor γ, which can help prioritize immediate rewards.
Note the q-values can be saved in memory as a table or list for
containing the value of each state-action. This data structure
is known as a q-table and deals with a finite number of state-
action pairs.

The optimal action is often calculated as the action that
will give the greatest reward. This approach is known as
acting greedily with respect to the policy, and helps the agent
maximize future reward. Practically, the value of each action
that can be taken from a current state is obtained from the
q-table, and the action with the maximum q-value is selected.
Note that acting based upon the expected reward does not
mean a reward will be received immediately, especially when
operating with a policy that is inaccurate. We may encounter
unexpected rewards or penalties which may be used to update
the q-value in the q-table according to the equation:

qnew(S,A) = (1− α)q(S,A) + ...

...+ α(Rt+1 + γ ∗maxA′(q(S′, A′)) (2)

Where qnew(S,A) is the updated policy of some state-action
pair, q(S,A) is the existing q-value, α is the learning rate,
and Rt+1 is the observed reward. This formulation allows
the reward of the immediate to be updated, but the reward
propagates to upstream states due to the second term. This
approach allows existing values in the q-table to be modifies
slightly rather than being completely replaced.

Note that agents that act greedily with respect to a policy
will always take actions known to give rewards, and may
miss taking actions where a potential reward is unknown.
One solution is the ϵ-greedy algorithm, which allows an agent
to take random actions with some probability ϵ. In other
words, ϵ is a probability threshold for determining when to
act randomly. The parameter ϵ can be varied over time using:

ϵj+1 = ϵj ∗ ϵDecay (3)

Where ϵDecay is the decay rate of ϵ with respect to the
number of episodes in a game. Note this formulation converges
to zero given enough iterations, though other formulations may
converge to some minimum ϵ threshold.

These principles used to program software that operates
according to the pseudo code in Algorithm 1. Note I followed
a video tutorial to implement this underlying algorithm [2].
Additional software was programmed during this project to
streamline the experimentation process. This software is pub-
licly available on Github [5].

Algorithm 1: Pseudo-code for the ϵ-Greedy Algorithm
Episode = 0;
Set initial state;
Done = False;
while Done == False AND Episode ≤ maxEpisode
do

if RANDOM ≤ϵ then
Get random action;

else
Determine action of maximal expected reward;

end
Update current state given the selected action;
Get reward of updated state;
Update policy value in Q-table;
if Stopping criteria met then

Done = True;
else

ϵ = ϵ*ϵDecay;
Episode += 1;

end
end

B. Problem Description: OpenAI’s Mountain Car

The ϵ-Greedy algorithm was used during the full project
when studying how an agent’s performance varied when
altering the learning parameters and feedback modalities.
The Mountain Car environment typically allows the agent to
perform three actions based upon a state-space composed of
two state variables. The actions are move left, move right,
and do nothing. The state variables are the agent’s position
along the horizontal axis (X0) and the velocity along this axis
(X0dot). Both of these variables are continuous but bounded.
Discrete states were determined by dividing the parameter
range into a number of bins.

Because the agent starts at the bottom of the valley depicted
in Fig. 1, the RL algorithm needs to determine how to move
the car back and forth to build momentum. However, there is
a time limit forcing the agent to perform quickly. When the
game is running, the agent receives a ‘-1’ reward any time it
is not at the goal, and a receives a reward of ‘0’ after reaching
the goal.

Three experiments were performed. Experiment 1 varied the
learning parameters according to Table I to study the impact
on a set of performance metrics. These metrics include the
number of episodes until solving the game ten times in a row,
and the minimum, average, and maximum performance over
two epochs. Experiment 2 looked closer at the relationship
between ϵDecay and the agent’s ability to solve the game in
few episodes.

Experiment 3 varied the agent’s feedback modalities to
understand the impact on the how the agent performed actions
sequentially through the state space (the state-space trajectory).
Four feedback channels were added to the Mountain Can
environment for Experiment 3. These variables include the
position and velocity from the previous state (X1 and X1dot,
respectively) and the difference between the current and prior
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state variables (∆X = X0 − X1 and ∆Xdot = X0dot −
X1dot). Five feedback modalities were designed using from
these feedback channels as summarized in Table II.

The results from each of these experiments are discussed in
Section III.

TABLE I
Learning parameters designed for Experiment 1 to understand the impact on

the agent’s performance through all episodes. Each combination of these
learning parameters were used as a separate experiment. The FM0 was

used during Experiment 1.

Bins α γ ϵ

20, 30 0.1, 0.2 0.85, 0.95 0.25, 0.35

TABLE II
Feedback modalities designed to evaluate cases beside the baseline modality
(FM0) where the agent has added feedback (FM1 - FM3) and inhibited

feedback (FM4).

Vars. FM0 FM1 FM2 FM3 FM4

X0 ✓ ✓ ✓ ✓ ✓
X0dot ✓ ✓ ✓ ✓ ✗
X1 ✗ ✓ ✗ ✓ ✗

X1dot ✗ ✓ ✗ ✓ ✗
∆X ✗ ✗ ✓ ✓ ✗

∆Xdot ✗ ✗ ✓ ✓ ✗

III. EVALUATION

This section describes the results and evaluation of the three
experiments described in Section II. Section III-A describes
results from testing the q-learning software. Sections III-B,
III-C, and III-D describe the results of Experiments 1, 2, and
3, respectively.

A. Results from Building Q-Learning Software

Results from a simple test case are depicted in Fig. 2 which
shows how the Q-table changes over time. The evolution of
the agent’s state-trajectory is shown in Fig. 3. This test was run
using the following learning parameters: Bins = 10; α = 0.1;
γ = 0.95; ϵ = 0.95; ϵ-decay = 0.99. Fig. 2 shows three rows of
plots where each row corresponds to episodes 400, 800, and
1200. Each row has four images coloring the 2D state-space
where X0 is on the x axis, and X0dot is on the y axis. the
first three plot columns correspond to different actions. From
left to right, these actions represent the agent moving left,
doing nothing, and moving right. The fourth column colors
the state space with the action having the maximal q-value.
During a given episode, the agent would select these actions
when acting greedily.

Fig. 2 shows that the center of the state spaces has a the
most negative q-values. This state region represents when the
car is in the center of the state (X0=0) and is not moving
(X0dot = 0). The surrounding state space shows larger q-
values because the state-space was initialized with a uniform
random policy between zero and two. Because the agent starts
in the middle and does not receive a reward until reaching the
goal, every action it takes will receive a penalty. Consequently,
unexplored regions will have a higher reward and the agent

will give preference to these states until reaching the goal.
The emergent agent behavior is exploratory. Note that after
800-1200 episodes, general regions start appearing in the
maximum-action column. When X0 is greater than 0, the
action with maximum reward is moving right as this action
allows the agent to reach the goal. When X0 is less than 0,
the action with maximum reward is corresponds to moving
left as this action allows the agent to build momentum before
going up the hill.

The agent’s state was saved for all time-steps and episodes
in order to create Fig. 3. This figure shows the agent’s
sequential actions through the state space. The agent starts at
the black dots in the center and moves along a given trajectory
before the episode terminates at a red dot. The spiral pattern
corresponds to the agent moving left and right across the
environment, accelerating in the positive then negative direc-
tions. Cases where the red dot crosses the red line represents
the agent passing the goal. Note how the the agent did not
meet the objective for the first third of the episodes, starts
reaching the goal in the second third, and then regularly meets
the objective during the last third. This transition represents
the agent learning the correct policy per state-action pair.
Furthermore, the last third of the episodes show that the agent’s
performance is more consistent. This trait occurs because the
agent is learning more of the optimal policy, and because ϵ will
be small during this episode (see Section III-C). These results
are typical for each case in Experiments 1 through 3, indicating
indicate that the Q-learning algorithm was implemented as
expected.

B. Experiment 1: Variation of Learning Parameters

Experiment 1 varied the learning parameters to understand
the impact on the agent’s performance, as summarized in Fig.
4. This figure shows that it generally takes fewer episodes to
solve the game when using a bin size of 10, an α of 0.2, a γ of
0.95, and an ϵDecay of 0.35. A smaller bin size likely reduces
the number of episodes needed because the dimensionality is
reduced. In other words, the number of q-values that need
to be updated is smaller, which is significant because the
dimensionality increases as the square of the bin size. In other
words, more time can be spent learning the correct policy
rather than visiting new states.

The maximum and mean reward across all metrics is
generally increased for the learning parameters above. Conse-
quently, these parameter values were used during Experiments
2 and 3.

C. Experiment 2: Impact of ϵDecay

Further analysis after Experiment 1 revealed that the range
of ϵDecay was not large enough during the first trial. Fig
7 shows how ϵ changes with the number of episodes for
different values of ϵDecay. The largest value of ϵDecay testing
in Experiment 1 was 0.35, which results in an ϵ curve that is
nearly zero for the duration of each test. The three values
of ϵDecay in Fig 7 are examples of parameters that allow
for a meaningful difference in agent exploration across a the
duration of an experiment with 1200 episodes.
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Fig. 2. Evolution of policy function (or Q-table) across 1200 episodes for three actions: Move left (0), Do nothing (1), and move right (2). The action with
the maximum q-value for a given state (a pair of X0 and X0dot values) is selected as the action with maximum-reward. Learning parameters: α = 0.1; γ =
0.95; starting ϵ = 0.95; ϵ-decay = 0.99.

Fig. 3. State trajectories of the car, skipping every 25 episodes. Plots shows how the agent initially fails to reach the goal for the first third of 1200 episodes.
The agent begins to reach the goal during the second third of the episodes, but only reaches the goal consistently in the last third of the episodes. Learning
parameters: α = 0.1; γ = 0.95; ϵ = 0.95; ϵ-decay = 0.99.
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Fig. 4. Results from Experiment 1. The starting ϵ was 0.95. Ten consecutive wins were needed to characterize an agent as having stably solved the game.
Generally, a smaller bin size, larger α size, larger γ size, and larger ϵdecay size improved agent’s performance.

Fig. 6 shows the results from training five more agents for
additional values of ϵDecay. The mean reward is shown as
a function of the episodes or epochs. Note how each agent
can learn for many episodes before receiving a reward, at
which point many spikes appear at once which represents
repeated success. The colored markers shows where each agent
successfully solved the game for ten consecutive runs. Larger
values of ϵDecay tended to require more episodes to solve the
game (Fig. 7) likely because increasing ϵDecay allows for more
exploration.

While this experiment was performed because ϵDecay was
expected to be too small, it showed that ϵDecay = 0.35 does
result in the least number of episodes required to converge to
a winning policy. This value was used in Experiment 3 as a
result. However, the larger ϵDecay values may be associated
with other performance metrics, such as stability and policy
robustness, that are unexplored in this paper.

Fig. 5. Relationship between ϵ and the number of episodes as ϵDecay varies.
Starting ϵ = 0.95.

D. Experiment 3: Impact of Feedback Modalities

Experiment 3 was designed to study the influence of dif-
ferent feedback modalities on an agent’s performance. The
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Fig. 6. Relationship between of ϵDecay and number of episodes as ϵDecay

varies. Learning parameters: α = 0.1; γ = 0.95; Starting ϵ = 0.95. The colored
circles indicate the episode where an agent consecutively solved the game ten
episodes in a row.

Fig. 7. Relationship between ϵDecay and number of episodes as ϵDecay

varies. Learning parameters: α = 0.1; γ = 0.95; Starting ϵ = 0.95 The points
circles indicate the episode where an agent consecutively solved the game
ten episodes in a row. The case where ϵDecay = 0.999 is not plotted to aid
visualization.

performance metrics for comparing each modality are the
qualities of the state trajectories and number of episodes
required to solve ten consecutive games.

Fig. 8 shows each Feedback Mode (F-Mode or FM) from
Fig. II and compares them in terms of the mean reward and
total number of episodes. The baseline feedback mode (FM0)
required the smallest number of episodes to solve the game
(Fig. 9). While the feedback modalities with more channels
(FM1 through FM3) added information that could be useful
to the agent, this information increased dimensionality sig-
nificantly. However, while dimensionality increases by about
BinsD, where D is the dimensionality of the state space, the
number of episodes required to solve the game only increased
by about N ∗ D, where 1.5 ≤ N ≤ 8. This observation is
crude, but if true it may indicate that some features in the
added channels were useful. However, as D increases, the
amount of unused state space also increases, so this prospect
is inconclusive.

Fig. 8. Learning parameters: α = 0.1; γ = 0.95; ϵ = 0.95; ϵ-decay = 0.35.
The colored circles indicate the episode where an agent consecutively solved
the game ten episodes in a row.

Fig. 9. Relationship between ϵ-decay and number of episodes as ϵ-decay
varies. Learning parameters: α = 0.1; γ = 0.95; ϵ = 0.95; ϵ-decay = 0.35.

Note that reducing D also increased the required number of
episodes. For example, FM4 reduced D by excluding X0dot,
but failed to solve ten consecutive runs in the first 10,000
episodes. This run was marked as unsuccessful. However, this
modality produced a maximum number of consecutive wins
of 7, making it seems possible for this modality to find an
optimal policy. This case illustrates that some information,
such as X0dot, is worth increasing dimensionality.

Fig. 10 compares the state-trajectories of FM0 through
FM3. FM4 was excluded as it failed to converge. While
the number of episodes to solve the problem changes per
agent, the learned state-trajectories remain largely the same.
The similarity likely results from the simplicity of the game,
as there is one primary path through the state space that results
in a win condition. Varying the feedback modality for games
with larger solution spaces may results in more interesting
variability in an agent’s state trajectories.

The results from this experiment illustrate a trade-off be-
tween the benefit of added information yet with the detriment
of increased dimensionality. The next steps for this work are
twofold: (1) The approach in this paper could be applied to
more complex environments with larger solution spaces, and
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Fig. 10. State trajectories of the car, plotting every fifth episode. These plots show how different feedback modalities change the episode count needed to
reach the goal consecutively across ten runs. The goal is depicted as the red line on the right of each subplot. The black points show where the agent started,
and the red points depict points where the agent stopped at the end of an episode. Comparing the stopping points and frequency of reaching the goal helps
evaluate each feedback modality. Learning parameters: α = 0.1; γ = 0.95; starting ϵ = 0.95; ϵ-decay = 0.35.

for this case (2) dimensionality reduction could be used to sim-
plify the state space. Some combination of increasing feedback
dimensionality while applying dimensionality reduction may
have potential to improve the model performance and resulting
learning rate.

IV. RELATED WORK

Reinforcement learning has been researched for many years,
so there are many related works that improve upon the methods
used in this project. For example, this work encountered the
curse of dimensionality both in the required memory usage
and longer training time. This problem comes largely from

the need to discretize continuous state spaces into smaller
regions. Several solutions to solve this problem include deep
Q-learning and RL for continuous state and action spaces.

Deep q-learning replaces the need for a q-table by using
deep neural networks to map an input state space to an
output action space. This approach often trains the deep neural
network in an iterative method as the policy function can
change between iterations, thereby changing the predicted
class labels [6]. Deep Q-Learning has applications in and
beyond the fields of robotics, game theory, natural language
processing [7].

Representation of continuous action spaces has been ac-
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complished using value-gradient based greedy policies and
continuous actor-critic methods [8]. The author Doya mentions
that continuous representation of state-spaces with respect to
time can improve the continuity and smoothness of control,
and says there are benefits in efficiency. An added benefit
is removing the need to partition a continuous spaces into
discrete representations [8].

Recent advances in the field of RL include evolving RL
algorithms and the pursuit of more interpretable models [9].
Applications are growing in partially observable Markov deci-
sion processes [10]. Other developments center around inverse
and multi-agent RL [11].

V. SUMMARY AND CONCLUSIONS

The conclusions from work include:
1) Increasing the dimensionality of feedback modalities

may give agents helpful information, but at the expense
of training time and memory requirements. This trade-
off needs to be balanced.

2) It is important that learning parameters such as ϵDecay

be tuned to the given environment and feedback modal-
ity these parameters influence the number of episodes
required to train an agent reliably.

3) Different feedback modalities can result in the same
state-trajectories for an agent. This observation may
result from the limited solution space present in the
Mountain Car environment. More complex games and
environments would serve as a better platform for
understanding whether changing feedback modalities
significantly influences learned trajectories through a
higher-dimensional state spaces.
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