
A Survey of Classification Algorithms Applied to
Handwritten Character Recognition

Jesse Jones
sch. Natural Resources & Environment

University of Florida
Gainesville, Florida, United States

jcj9898@ufl.edu

Stephen Wormald
dept. Electrical & Computer Engineering

University of Florida
Gainesville, Florida, United States

stephen.wormald@ufl.edu

Mark Yen
dept. Mech. & Aerospace Engineering

University of Florida
Gainesville, Florida, United States

markyen@ufl.edu

Abstract—There are numerous machine learning algorithms
appropriate for classification tasks, each with varying assump-
tions and complexity. This paper applies multiple models to
the problem of handwritten character recognition as a project
topic for the Fundamentals of Machine Learning course at the
University of Florida. Convolutional neural networks performed
the best in initial tests, and were down-selected for continued
hyperparameter optimization until achieving a test accuracy
greater than 90% for a set of ten characters. A second model
was developed to identify filter images that were not in original
character set, resulting in a filter accuracy greater than 95%.

I. INTRODUCTION

IMAGE recognition is a longstanding pursuit of research
and algorithm development in the field of Machine Learn-

ing (ML). Handwritten character recognition often serves as
a standardized, computationally-simple benchmark for com-
paring performance across various model types [1]. The per-
ceptron and ADALINE are landmark models that attempt to
solve the character identification problem [2, 3], providing
example of some of the earliest artificial Neural Networks
(NN). However, these are just two of many models in a long
pedigree of algorithms developed for classification.

Aside from the perceptron, there are many classification
approaches. Linear classifiers include Support Vector Ma-
chines (SVM) and Linear Discriminant Analysis (LDA). Prob-
abilistic models include the Naive Bayes (NB) classifier and
Logistic Regression (LGA). There are also non-parametric
models, such as k-Nearest Neighbors (k-NN) and weighted-
k-NN. Connectionist models such as NNs took biological
inspiration from the brain by implementing interconnected
neuronal architectures that provided a mathematical basis for
learning complex patterns in high-dimensional feature spaces
[4]. While NNs became useful in image classification, the
evolution of Convolutional Neural Networks (CNNs) further
improved classification performance for high dimensional data
such as images by encoding spatial information in the NN
architecture [5]. There is rich history in the development
of classification algorithms, but it can be challenging to
appreciate the change in model performance over time.

This paper demonstrates the performance of various algo-
rithms when applied to the image recognition of handwritten
characters (image set ϕ), and is a final project submission
for the Fundamentals of Machine Learning course at the
University of Florida (EEL5840). A key grading criteria was
classification accuracy, so we compared the performance of

multiple model types (Section III-A) and down-selected the
best found type for fine-tuning and submission in the project
(Section III-B). After tuning a primary model, we created a
secondary model to compete in a bonus competition where
students needed to flag images not represented by the character
set in ϕ. The class of images not represented by ϕ is called γ,
where Ω is the set {ϕ, γ} such that P(Ω) = 1. Ω is called the
hard dataset used to evaluate models in the bonus competition
(Section III-C).

II. IMPLEMENTATION

This section discusses data collection and preprocessing for
the easy test set ϕ (Section II-A) and for the hard test set Ω
(Section II-B).

A. Implementation for Easy Dataset

The ϕ dataset was collected from 67 students, where each
student hand-wrote and photographed 10 samples for each
character in the character set β = {‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f’,
‘g’, ‘h’, ‘$’, ‘#’}. Each student labeled their images, resulting
in a total of more than 6700 images. Class labels for each
character were manually verified multiple times.

Image pre-processing included image erosion, applying the
morphological gradient, image resizing, and normalization.
These preprocessed images were used in several experiments
to identify a model that could classify the character set with
high test accuracy. These experiments (Experiments 1 and 2
in Section III) surveyed an array of model types and down-
selected the CNN model type for hyperparameter tuning.

B. Implementation for Hard Dataset

Theoretically, the γ dataset covers a larger feature space
than is represented by ϕ. However, we let the cardinality
of γ and ϕ be nearly equal (|γ| ≈ |ϕ|) in an attempt to
prevent model overfitting. Dataset γ was generated with the
program Imageye [6] which was used to download random
images from the Google search engine for the following
categories: animals, people, ceremonies, household objects,
vehicles, outdoor scenery, and computer-generated characters
and digits not represented by classes in ϕ. The authors’ a
priori beliefs around the underlying distribution of Ω placed
slight emphasis on images resembling dogs given intuition of
Professor Silva’s affinity for the domesticated wolf descendant.
Aside from this exception, the number of samples in each

category was randomized. Note |γ| = 6,871, which is 2.25%
greater than that for ϕ.

Images collected for γ underwent the same preprocessing
steps outlined for ϕ (II-A). The resulting Ω was used in a
single experiment (Experiment 3 in Section III) to train a filter
neural network (FNN) that discriminates between ϕ and γ.
Further details are presented in Section III-C.

III. EXPERIMENTS

Three experiments were performed to identify a model that
could classify hand-written characters. Experiment 1 evalu-
ated the test accuracy of several low-complexity model types
(Section III-A). CNNs performed best from the initial model
types, so Experiment 2 iteratively enhanced the CNN model
architecture and tuned the learning parameters to minimize the
testing error and achieved a 95% test accuracy for the easy
data set (Section III-B). Experiment 3 extended the model
architecture to filter images belonging to the γ image set
using a secondary FNN (Section III-C). The FNN had a 98%
detection rate for the γ test samples (See Section II-B). For all
experiments, 30% of the training data was used as validation
data during K-fold cross validation.

A. Experiment 1 to Down-Select a Model Types

Six model types were selected to evaluate performance
when trained using the ϕ dataset. The model types included
NB, k-NN, LDA, LGA, SVMs, and CNNs. Table I summarizes
the parameters used to train each each model in Experiment
1. The image resolution was 75x75 pixels for all models.

Only two model types performed close to or above 50%
accuracy for the first iteration, including the SVM and CNN
classifiers. Note that SVM used the radial basis function (RBF)
kernel, which is known to be powerful in finding decision
boundaries in high dimensions. The CNN model is different
than the other models as it encodes spatial information into
the model architecture. This information likely improves the
test accuracy because images contain many spatially-relevant
patterns. Because the CNN worked best for this dataset, this
model type was selected for hyperparameter optimization in
Experiment 2.

B. Experiment 2 to Enhance CNN Architecture

The general CNN architecture is displayed in Fig. 1 showing
an input layer (Fig. 1.1), convolutional layers (Fig. 1.2), fully
connected layers (Fig. 1.3), and an output layer (Fig. 1.4).
In addition to the learning algorithm hyperparameters, each
layer type corresponds to a set of variables that needed to be
optimized:

1) The input layer can vary in image resolution. Tests
indicated that an image size around 150x150 pixels
performed best. This parameter was held constant for
Experiments 2 and 3.

2) CNN layers can vary in number of layers, kernel size,
pooling size, and application of batch normalization and
dropout.

TABLE I
Summary parameters used when training six models in Experiment 1. Many

parameters represent the defaults present in the scikit-learn python library
[7]. The starting CNN parameters are from software given by Haotian Yue
[8]. The test accuracy of each model type is given beside the model name.

Layer # is abbreviated as (L#). Fully Connected is abbreviated (FC).

Naive Bayes (NB) Test Accuracy: 21.3%
Class Count 10
Variable Smoothing 1e-9
K-Nearest Neighbors (k-NN) Test Accuracy: 21.1%
K neighbors 4 (Best within 1>=K>=10)
Weighting Uniform
Distance Metric Minkowski
Leaf Size 30
Linear Discriminant Analysis (LDA) Test Accuracy: 19.9%
Components 9

Solver Singular Value
Decomposition

Shrinkage None
Logistic Regression (LGA) Test Accuracy: 27.8%
Solver Limited-memory BFGS
Penalty L2
Tolerance 1e-4
Support Vector Machine (SVM) Test Accuracy: 49.1%
Kernel Radial Basis Function
Regularization parameter (C) 10
Convolutional Neural Network (CNN) Test Accuracy: 73.9%
Batch Size 64
Epochs 25
CNN-FC Layers 2-2
CNN Filter Size 32 (L1); 64 (L2)
CNN Kernel Size 5 (L1); 5 (L2)
CNN Pooling Size 2 (L1); 2 (L2)
CNN Batch Normalization None
FC Layer Size 1024 (L1); 10 (L2)
FC Layer Activation Function Relu (L1); Softmax (L2)

3) Fully Connected (FC) layers can vary in number of lay-
ers, number of nodes per layer, and application of batch
normalization and dropout.

Fig. 1. Template CNN architecture with (1) an input layer, (2) a set of
convolutional layers, (3) a set of FC layers, and (4) the output layer.

Experiment 2 manually performed alternating optimization
where one parameter was changed at a time to reduce the
test error. Table II sequences parameter changes that improved
model accuracy. This table can be interpreted to understand
potential benefits in tuning each parameter.

Increasing the number of convolutional layers from two to
five increased test performance by nearly 4%, likely because
the model could find more compressed objects in the feature

space. Past five layers, model performance did not improve
significantly.

Increasing the number of FC layers improved the model
performance by nearly 3%, likely because more degrees of
freedom are available to map input images to the output label.
Excessive layers significantly increased the training time, so
only five were used.

Changing the CNN kernel size per layer decreased test
accuracy by nearly 3%, so the kernel size was kept constant at
5 for the rest of the experiment. It is unknown whether further
optimization of this variable could improve performance.

Using a series of reduced batch sizes increased the test ac-
curacy by nearly 8%, likely because decreasing the batch size
increases the rate of convergence to local minima. However,
the variability of the learning curve typically increases which
is why a second set of epochs was used with an increased
batch size. This approach had the largest improvement on the
CNN performance.

Using batch normalization and dropout after every con-
volutional layer increased the test accuracy by about 2%.
Normalization helps keep feature distances similar between
consecutive layers, which helps the backpropagation algorithm
converge. Dropout was applied after every convolutional and
fully connected layer. The probability of dropout was low
(20%) in the first two convolutional layers because these
two layers are responsible for extracting features from the
images and we did not want to lose essential information.
The probability increased to 30% in the third and fourth
convolutional layers because this is the point where features
significance is weighed. The probability dropped back down
to 20% in the last convolutional layer because this is the point
where important features are consolidated. The probability
in the fully connected layers remained high (30% to 40%)
because this is where features are being pieced together to
identify which classes the images belong to. Having a higher
dropout probability in the fully connected layers can reduce
the effects of noise on classification.

Combining these changes produced the final CNN archi-
tecture. Finally, grid search was used to optimize the batch
size and number of epochs with respect to the testing loss for
batch size in the domain B : [2, 64] and epochs in the domain
E : [5, 15]. As seen in Fig. 2, the test accuracy achieved
approximately 95% after three successive training iterations
as specified by ID 7 in Table 2 (batch size: 4, 9, 12; epochs:
6, 9, 12). Furthermore, both the training and test accuracies
were very close to each other which usually indicates that the
model is not overfitting. Fig. 2 also shows both the training and
test loss decrease as training epochs increase, though they stop
improving around 24 epochs. The resulting confusion matrix
is in Fig. 3.

C. Experiment 3 to Adapt the CNN for the Hard Dataset

Experiment 3 tested a second CNN model trained as a filter
(or the FNN), which flags images as the γ class. During hard
mode testing, a test image is first passed through the FNN. If
the image is classified as belonging to γ, it will automatically

Fig. 2. Training and test accuracy and loss for each epoch when training the
primary CNN for ϕ.

Fig. 3. Multiclass confusion matrix for the trained primary CNN for ϕ.

be labeled as -1. If the image is classified as belonging to
ϕ, then the image proceeds to the Primary NN (PNN) for
further classification. The PNN is the same model trained in
Experiment 2.

The FNN architecture duplicated the PNN, or row 6 from
Table II. Both the PNN and the FNN architecture are exactly
the same except that the FNN outputs two classes instead of
the ten used in the PNN. As the FNN architecture was held
constant, Experiment 3 focused on using grid search to find
the optimal batch size and number of epochs for the FNN.

When training the FNN, all images within ϕ were labeled
as 1 and all images within γ were labeled as 0. Training the
learning parameters found that a batch size of 4 for the first
6 epochs and a batch size of 9 for the last 5 epochs produced
the highest testing accuracy. Fig. 4 shows the filter accuracy
and loss, including the confusion matrix for the FNN.

IV. CONCLUSIONS

Salient conclusions from this project are seven-fold: (1)
Evaluating a set of model types is important to achieving good
performance in classification tasks. (2) The dataset seems to
impact the best model selection. For this project, the CNN
classifier performed well as may result from encoding the
spatial information contained in the handwritten character

TABLE II
Summary of Experiment 2 to enhance CNN model architecture. All models were trained using the Adam optimizer with a learning rate of 1e-4, and used
the categorical cross-entropy loss function. The architecture defines a set of convolution layers (C-Layer) which are flattened prior to entering a set of FC
layers. All layers used the Relu activation function unless marked as Soft Margin (SM). Experiment 2 was performed using Tensorflow Keras, though the

final model was translated to and optimized using the Pytorch library. Cells with semicolon-separated values infer how a variable changes between
consecutive convolutional (C) or FC layers. In each row, blue and bolded text illustrates which parameter was changed in a given sub-experiment. The given

values per row represent the best of several tested values.

ID
(Test Accuracy)

Batch Size
(Epochs)

Layers
(C-FC)

C-Layer
Kernel Size

C-Layer Filters
(Act. Func.)

C-Layer
Pooling Size

C-Layer Batch
Normalization
and Dropout

FC Layer
Nodes (Act.)

1 - (77.8%) 64 (8) C5-FC2 5;5;5;5;5 32;64;64;64;64 2;2;2;2;2 None 1024;10(SM)

2 - (81.6%) 64 (9) C5-FC5 5;5;5;5;5 32;64;64;64;64 2;2;2;2;2 None 1024;512;256;
64;10(SM)

3 - (77.9%) 64 (7) C5-FC5 20;16;8;4;2 32;64;64;64;64 2;2;2;2;2 None 1024;512;256;
64;10(SM)

4 - (82.6%) 64 (15) C5-FC5 5;5;5;5;5 32;64;64;64;64 4;3;3;2;2 None 1024;512;256;
64;10(SM)

5 - (90.3%) 4;8 (10;2) C5-FC5 5;5;5;5;5 32;64;64;64;64 4;3;3;2;2 None 1024;512;256;
64;10(SM)

6 - (92.0%) 4;8 (10;2) C5-FC5 5;5;5;5;5 32;64;64;64;64 4;3;3;2;2 Used 1024;512;256;
64;10(SM)

7 - (95.0%) 4;9;12 (6;9;10) C5-FC5 5;5;5;5;5 32;64;64;64;64 4;3;3;2;2 Used 1024;512;256;
64;10(SM)

Fig. 4. Training and test accuracy and loss for each epoch when training the
filter CNN for Ω. The two class confusion matrix is included in the figure.
A batch size of 4 was used for 6 epochs, followed by 5 epochs with a batch
size of 9. This change reduces the variability in the learning learning curve.

images. (3) Reducing an image’s resolution fights the curse
of dimensionality, though the loss of information eventually
decreases training performance. (4) There can be a lot of
guesswork in finding the appropriate CNNs architecture. Many
interdependent CNN hyperparameters comprise a large design
space which can be hard to explore. Proper experimental
design appears important to achieving high model perfor-
mance. (5) The batch size can significantly impact the learning
algorithm’s ability to converge to a high-performing model. (6)
Dropout can improve testing performance, but the parameters
must be carefully selected to avoid losing important informa-
tion in the images. (7) Batch normalization can help prevent
certain weights from dominating during backpropagation.

V. ACKNOWLEDGEMENTS

A special thanks to Dr. Silva for teaching the Fundamentals
of Machine Learning course and to Haotian Yue for his
assistance as a TA this semester.

VI. REFERENCES

[1] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, “EM-
NIST: Extending mnist to handwritten letters,” 2017 Inter-
national Joint Conference on Neural Networks (IJCNN),
2017.

[2] B. Widrow and M. E. Hoff, “Adaptive switching circuits,”
Defense Technical Information Center, 1960.

[3] F. Rosenblatt, “The Perceptron: A probabilistic model
for information storage and organization in the brain.,”
Psychological Review, vol. 65, no. 6, pp. 386–408, 1958.

[4] R. E. Uhrig, “Introduction to artificial neural networks,”
Proceedings of IECON ’95 - 21st Annual Conference on
IEEE Industrial Electronics, 1995.

[5] S. Albawi, T. A. Mohammed, and S. Al-Zawi, “Un-
derstanding of a convolutional neural network,” 2017
International Conference on Engineering and Technology
(ICET), 2017.

[6] Imageye. “Image downloader - Imageye”. In: (2022).
[7] F. Pedregosa et al. “Scikit-learn: Machine Learning in

Python”. In: Journal of Machine Learning Research 12
(2011), pp. 2825–2830.

[8] Haotian Yue. “cnnPytorch.py”. In: (2022).

